
Modelling age-related changes in
information processing

Daniel H. Spieler
Stanford University, CA, USA

Researchers in cognitive ageing seldom take advantage of explicit quantita-
tive models of information processing to account for age diVerences in
cognition. Where quantitative models have been used, these models
typically remain silent about the details of information processing. The
lack of explicit cognitive models has consequences for the interpretation of
a number of empirical results. Using a speci� c class of models called
random walk models, I review evidence showing that the empirical
relations taken as support for global age-related changes are consistent
with a number of possible age eVects on information processing. In
addition, I demonstrate that these models can be used to account for age
diVerences within the context of individual experiments and such modelling
has important implications for the interpretation of age diVerences in
performance.

The central point that I argue for in this paper is not novel (Fisher &
Glaser, 1996; Newell, 1973; RatcliV, Spieler, & McKoon, 2000) but it is
one that bears some reiteration, especially within the � eld of cognitive
ageing. The point is that valid conclusions about the nature of age diVer-
ences in cognition require the use of explicit information processing
models that make quantitative rather than simply qualitative predictions.
Quantitative modelling is particularly critical to research progress in
cognitive ageing because of the unique inferential problems associated
with using cognitive psychological paradigms in the context of between-
group comparisons.
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In arguing for the importance of quantitative modelling in cognitive
ageing, I will explore two speci� c instances where the lack of explicit
information processing models led to a misunderstanding of what speci� c
empirical results imply about age diVerences in cognition. First, I turn to
the question of whether age diVerences in cognition are best characterised
as general and global in nature or as a set of process-speci� c age eVects.
Second, I examine the role of modelling in the interpretation of the
results of individual experiments. I turn � rst to the issue of general versus
process-speci� c ageing.

EMPIRICAL EVIDENCE FOR GENERAL AGE EFFECTS

Older adults are slower than younger adults. While this statement is
simple, the implications are not. Suppose (e.g., Faust, Balota, Spieler, &
Ferraro, 1999) that for any task there is some amount of information
that needs to be processed. Further assume that experimental manipula-
tions in� uence the amount of information to be processed. Now assume
that individuals (and groups) diVer in the rate at which that information
is processed. The changes in response time (RT) in response to experi-
mental manipulations will be greater for the slow compared to the fast
information-processing group (Cerella, 1985; Myerson, Hale, WagstaV,
Poon, & Smith, 1990; Salthouse & Somberg, 1982).

Creating a scatter plot (Brinley plot; Brinley, 1965) of young and old
mean RTs for a set of conditions and tasks demonstrates this nicely.
When the data is plotted in this manner, a striking regularity emerges. As
shown in Figure 1, the mean RTs for younger and older adults are gener-
ally linearly related, and the function relating the two generally has a
slope around 1.5 and a negative intercept (e.g., Brinley, 1965; Cerella,
1985; Salthouse & Somberg, 1982). Note also that the variance accounted
for by this linear relationship is typically in excess of 90% (frequently
over 95% ).

This empirical relationship has been demonstrated across a wide range
of tasks, conditions, and participant samples, suggesting that given the
mean RT results from a group of younger adults, it may be possible to
predict the speeded performance for a group of older adults. Because
these data points are drawn from a range of tasks and conditions that
tap a range of cognitive processes, age diVerences can be predicted with
little regard for the speci� c processes and knowledge structures used in
any individual task.

Following Cerella (1985) and RatcliV, Spieler, and McKoon (2000), we
can make this more explicit by developing a linear model of age-related
slowing. If RT is a function of diYculty x with a minimum RT b even
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when processing is extremely easy, then:

RT = ax + b

Suppose that x remains constant with age but what changes is a and b.
Thus

RTyoung = ayoung x + byoung

and

RTold = aold x + bold

and using algebra to eliminate x we get:

ao byao
RTo = — RTy + bo– ——ay ay

Note that this function has a form exactly like the one observed in most
Brinley plots, with a slope of ao/ay and an intercept of bo – byao/ay. This
very simple derivation suggests that we should obtain slopes greater than
one when ao ay.

Figure 1. Brinley plot demonstrating the common result of linear relationship between
young and older adult mean RTs. The different symbols represent different sets of tasks.
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This linear model suggests that we might account for a wide range of
empirical results in a very simple and elegant way. However, this formula-
tion provides little information about what is actually in� uenced by the
ageing process. It says only that older adults show a greater change in
RT compared to younger adults in response to changes in diYculty.

INFORMATION-LOSS MODEL

Providing a more speci� c framework accounting for the general slowing
results, Myerson et al. (1990) formulated a model intended to provide a
quantitative account for the empirical Brinley plots and provide a
mechanism for the in� uence of ageing on information processing. Within
the model, the total time between the onset of a stimulus and an indivi-
dual’s response is the RT. This RT is the sum of a number of individual
processing stages or steps.

RT = Tk

The time for each individual processing stage, Tk is a function of the
amount of information available at that stage, k.

D
Tk = —

Ik

where Ik = I(1 – p)k with D as a constant. The Ik de� nes the amount of
information available at stage k, and p represents the loss of information
at each processing stage. Thus, if there is less information available, then
the amount of time required to complete that stage increases. Finally, the
assumption is that a certain amount of information is lost at each proces-
sing stage. For example, as tasks become more complex, they require
more processing stages, and with more processing stages, the amount of
information lost increases. This loss of information parameter, p, is the
parameter assumed to change with age. The model gives rise to a Brinley
plot that is actually a positively accelerated power curve although within
the range of RTs typically examined, the approximation to a linear
function is quite high.

In both the linear model and the information-loss model, the primary
goal has been to account for age diVerences in general, and empirical
Brinley plots speci� cally. To varying degrees, these two models remain
silent about any aspects of underlying processing not required by the
between group comparisons.
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In the linear model and the information-loss model, ageing in� uences a
single parameter which in turn in� uences the type of Brinley function. The
function that relates the young and older adults’ performance provides the
estimate of the model parameter (e.g., information loss or ‘‘diYculty’’). If
all points fall along a single function, then only a single parameter value
is required, and if data points are better � t by two functions, then two
parameter values are needed. Framing the research question in this way
places considerable weight on the Brinley plot as a method for elucidating
the nature of age diVerences in performance. The assumption is that the
Brinley plot provides a way to determine how many parameters or
parameter values are needed to adequately account for age eVects. A
single Brinley function suggests a single parameter or parameter value,
and this in turn suggests a unitary in� uence of ageing on cognition.

To justify the central role for the Brinley plot method, it is not suY-
cient to show that a model can be formulated that is consistent with this
interpretation of the Brinley plot. One should also show that Brinley
plots constrain the interpretation of age eVects in alternative but plausible
models of information processing. Ideally these would be models that do
not make a priori assumptions about the nature of age eVects. In other
words, the case for generalised slowing accounts would be greatly
strengthened by showing not only that empirical Brinley plot results are
consistent with general slowing models, but that the empirical Brinley
pattern is inconsistent with a range of alternative models. If this empirical
result is compatible with a number of plausible models, then no indivi-
dual model gains much support by � tting these empirical results. To
explore the constraint imposed by results of empirical Brinley plots, I
turn to a traditional class of models commonly used in cognitive
psychology and that are applicable to many of the tasks in which age
eVects have been examined.

RANDOM WALK MODELS OF INFORMATION
PROCESSING

Random walk models, like other sequential sampling models (see Luce,
1986, for a review), make general assumptions about how information
accumulates for a response. Assume a simple case where the task is a
simple binary decision between two diVerent responses based on the
identity of a stimulus. This task could be a recognition memory judge-
ment, a perceptual discrimination task, or any other choice task. Two
basic parameters de� ne the speed and accuracy of a decision. First, there
is an amount of information that is necessary to make a decision, in
other words, the response criterion. Second, there is the rate at which
information accumulates toward a response. Following others (Luce,
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1986; RatcliV, 1978, 1988), I will refer to this as drift rate. In a binary
decision, information is consistent with one of the response alternatives,
moving the decision process toward the corresponding response boundary
and away from the alternative, resulting in a relative decision criterion.
At stimulus onset, the process starts equidistant from each response
boundary, re� ecting no bias for one response or another. (Response
biases can easily be modelled but generally experiments are designed to
discourage such biases).

Drift rate represents the quality or strength of information entering
into the decision process. High drift rates result in the decision process
moving quickly to one of the response boundaries while a low drift rate
results in a slow rate of approach to the response criterion. The name
‘‘drift rate’’ gives the impression that this represents a speed parameter,
but it is more accurately represented in terms of signal detection (for
extensive discussion, see Luce, 1986; RatcliV, 1978). If we assume that at
each point in time, the information entering the decision process is either
drawn from a signal or noise distribution and the decision process is an
ideal observer attempting to minimise both misses and false alarms, then
drift rate is directly analogous to the separation between the signal and
noise distributions, d . When the signal and noise distributions overlap
considerably, the resultant drift rate will be relatively low and when the
signal and noise distributions are far apart, the drift rate will be high.

On the assumption that the random walk is a model of the decision
process and the response time includes time for other processes, there is a
third parameter representing the residual time (Tr) and acts as an
additive constant.

There is reason to believe that the parameters of the model tap real
processes because it is possible to identify experimental manipulations
that have selective in� uences on these parameters. For example, there are
a range of manipulations that would seem to in� uence the quality of
information entering the decision process and, as expected, these manipu-
lations are modelled as changes in drift rate. Examples of these manipula-
tions include perceptual noise (RatcliV & Rouder, 1998) and ambiguity in
categorisation (RatcliV, Van Zandt, & McKoon, 1999). Moreover,
instructions to individuals to emphasise either speed or accuracy or that
bias individuals towards one of the response alternatives in� uence
response criteria. Finally, this class of models has found support from
recordings of neural activity in monkeys (Hanes & Schall, 1996).

RANDOM WALK MODELS AND BRINLEY PLOTS

Given the importance of Brinley functions, an obvious starting point is to
demonstrate that this class of models can at least generate linear Brinley
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functions that are commonly found. As shown in Figure 2, this class of
models is able to do so (RatcliV, Spieler, & McKoon, 2000).

Brinley plots suggest that diVerences in overall response time have
implications for the expected eVect size for an experimental manipulation.
Thus we might expect a slower group to show larger eVect sizes. Exactly
this scaling property is built into the general slowing models discussed
earlier. The drift rate parameter in random walk models also exhibits
such a relationship between speed and eVect sizes. This is best demon-
strated in signal detection terms. If the signal and noise distributions are
already far apart, then increasing the separation further is likely to have
only a small eVect. However, if the two distributions overlap substan-
tially, then even a small increase in separation will have large eVects on
performance. Similarly, if drift rate is already high, a further increase in
drift rate because of some experimental manipulation will decrease RT
only slightly, but at lower drift rates, a small increase in drift rate will
result in a large decrease in RT. This is shown in Figure 3, where the
faster group has a higher drift rate and the slower group has a lower drift
rate and some experimental manipulation is assumed to result in an equal
change in drift rate in the two groups. RatcliV, Spieler, and McKoon
(2000) showed that if young and old diVer in drift rate overall, and
experimental manipulations have identical eVects on drift rate for both
young and old, the diVusion model will produce a linear Brinley plot
with a slope greater than unity and a negative intercept. Importantly,
depending on the size of the experimental manipulations, changes only in

Figure 2. Brinley plot of mean RTs for simulated young and older adults using the diffu-
sion model (adapted from Ratcliff, Spieler, & McKoon, 2000).
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drift rate can generate a range of Brinley slopes and intercepts. The
actual slopes and intercepts depend on the size of the overall age diVer-
ence in drift rate and the size of the diVerences in drift rate across condi-
tions.

While the Brinley functions are in� uenced by age diVerences in drift
rate, it is not possible to work backwards from the Brinley function to
random walk parameters. The Brinley function does not suYciently
constrain the model parameters. For example, response criteria also in� u-
ence RTs generated by random walk models. We (RatcliV, Spieler, &
McKoon, 2000) have shown that age diVerences solely in response
criterion can also generate linear Brinley plots with a range of possible
slopes and intercepts. There is an important distinction between drift rate
and response criterion. While the eVect of changes in drift rate on RT
depends on the overall value of drift rate, the eVect of changes in
response criterion on RT is the same throughout the range of the
parameter (e.g., Figure 4). Equal changes in response criterion for
simulated young and old result in equal changes in RT for simulated
young and old. One might think of this in terms of moving the � nish line
in a race (assuming constant speed of the runners).

These results lead to two insights. First, interpretations of age diVer-
ences in the eVect of some experimental manipulation depend on what
parameter is in� uenced by the experimental manipulation and by the
nature of the overall age diVerence in processing. If an experimental

Figure 3. Example of overadditive interaction in slower group if both condition differences
and group differences occur in drift rate.
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manipulation has a primary in� uence on an individual’s criterion, then
age diVerences in eVect size may map closely onto age diVerences in
underlying processing. Alternatively, if an experimental manipulation
in� uences drift rate, then the interpretation of age diVerences in the eVect
of some experimental manipulation depends critically on how the overall
age diVerence is modelled. Second, if a given linear Brinley plot can be
generated by assuming age diVerences solely in drift rate or solely in
response criterion, then a single linear Brinley function drawn from a
range of tasks and conditions may re� ect a heterogeneous mixture of age
diVerences in drift rate and age diVerences in response criterion. Thus,
while models attempting to account for age diVerences in cognition
should be consistent with the empirical Brinley plots, these results alone
are inadequate in determining the number or type of in� uences that
ageing exerts on information processing.

CONSTRAINTS ON MODELLING OF AGE EFFECTS

If the random walk models can generate linear Brinley plots with changes
either in response criterion or drift rate, then this suggests that the
Brinley plots place insuYcient constraint on these models and it suggests
that additional empirical results are needed to adequately constrain these
models. These constraints come from two sources.

Figure 4. Example of additive effects if difference between conditions are in response
criterion.
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Changes in model parameters have implications for the shapes of
response time distributions and how those distributions diVer across
conditions. To characterise empirical RT distributions, it is common to
use a mathematical function that, if successfully � t to the data, provides a
description of the RT distribution via the parameters of the function.
RatcliV (1979) and many others (Heathcote, Popiel, & Mewhort, 1991;
Hockley, 1984; Hohle, 1965; Luce, 1986) have shown that a convolution
of a Gaussian and an exponential distribution, the ex-Gaussian, is gener-
ally successful in � tting empirical response time distributions from a
range of experimental paradigms. Fitting the ex-Gaussian distribution
yields three parameters that de� ne the shape of the distribution. The
parameters and are from the Gaussian distribution and re� ect the
leading edge and symmetric variability of the distribution, whereas the
exponential parameter re� ects the slow tail of the distribution (this is
more of a heuristic rather than a de� nition because is in� uenced by
RTs at other points in the RT distribution as well).

Figure 5 demonstrates how changes in the parameters of the random
walk in� uence the shapes of the RT distribution as captured by the ex-
Gaussian parameters. As the drift rate decreases, mean RT increases and
this increase is particularly apparent in the slow tail of the RT distribu-
tion as re� ected by the parameter. Figure 6 shows changes to the RT
distribution as a result of changes in response criterion. Note that in this
case, the change in mean RT is re� ected as changes primarily in the

Figure 5. Relation between ex-Gaussian parameters and drift rate.

226 SPIELER



parameter. Thus, while drift rate in� uences the skew and variability of
the RT distribution, response criterion tends to shift the RT distribution.
As a result of these diVerent in� uences of drift rate and response
criterion, knowledge of how response time distributions diVer across
groups or across conditions provides an important constraint on the
model. Of course, this also means that these models may not only
account for eVects on the mean of the RT distribution, but also for
eVects on the shape of the distribution.

A second source of constraint is error rates. If a decrease in drift rate
is analogous to an increase in the overlap between the signal and noise
distributions, a decrease in drift rate will result in slower RTs and an
increase in the error rate. Increasing RTs may also result from increases
in response criterion but the result will be a decrease in the error rate.
For practical purposes, error rates under 5% across all conditions
provide less constraint because a proportion of errors might arise from
inappropriate response mapping or lapses in attention that are not
directly related to the decision process modelled by the random walk. In
practice, error rates will tend to be most informative when above the
10% range. This need not be a serious liability because this means that
the random walk models are likely to be most informative in the range of
error rates that can be particularly problematic for other information-
processing models. Indeed, these models turn the liability of diVerential
error rates and the possibility of speed–accuracy trade-oVs into an asset

Figure 6. Relation between ex-Gaussian parameters and response criterion.
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because error rates help distinguish between changes in performance due
to drift rate versus response criterion.

There are three possible outcomes from the application of these informa-
tion-processing models. First, we may � nd that age diVerences are localised
to one parameter. For example, across a wide range of circumstances, age
diVerences may consistently be solely and uniformly in drift rate. This
outcome is unlikely because of the relationship between model parameters
such as response criterion and drift rate and error rates. Age diVerences
solely in one of these parameters would enforce considerably more unifor-
mity of age diVerences in RT and error rates than seems present in the
literature. Lower drift rates in older adults with equal response criteria in
young and old will generally result in larger error rates for older adults
than for younger adults. However, we know that in some domains, age
diVerences are present primarily in RT (e.g., many attentional paradigms),
whereas in other domains, age diVerences are present to varying degrees in
both RT and error rates. Moreover, in most studies, participants are
instructed to minimise error rates. This will generally induce a negative
correlation between drift rate and response criterion as individuals with low
drift rates adopt more stringent response criteria. Thus it seems unlikely
that age diVerences will be captured by a single parameter.

Second, the models may show that there is a single general transforma-
tion of the model parameters for younger adults that are able to � t older
adults across a range of tasks and conditions. However, there is at least one
instance in which young and old exhibit equal drift rates while old adopt
more stringent response criteria (RatcliV, Thapur, & McKoon, in press)
and one case in which young and old show equal response criteria but
diVerent drift rates (Spieler & Balota, 2000). Nonetheless, it may be prema-
ture to rule out this second possibility, as it remains to be seen whether
these results are exceptions to, rather than examplars of, the actual rule.

Third, we may � nd that what appeared to be a general relationship
between young and old performance evaporates into a variety of age
eVects that are highly dependent upon the task and the sample of subjects
used. It may be the case that in processing domains such as memory, age
diVerences are modelled solely in drift rate; in some domains, age diVer-
ences are perhaps solely in response criterion; in others, age diVerences
are some various mixture of drift rate and response criteria. There is
some preliminary evidence that appears to make this a likely outcome
(e.g., RatcliV, Thapur, & McKoon, in press; Spieler & Balota, 2000).

LOCAL ACCOUNTS IN COGNITIVE AGEING

In most experimental studies that include comparisons between younger
and older adults, age diVerences are not observed in the context of a wide
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range of tasks with large samples of subjects. Rather, as is the case for
most studies in cognitive psychology, a limited series of experiments is
conducted with relatively small sample sizes. These experiments generally
focus on one domain or one experimental paradigm. This approach
makes it particularly diYcult to test the traditional general slowing
argument that relies on empirical relations from a range of tasks and
conditions. In contrast, explicit information processing models allow us to
capture age diVerences in conjunction with traditional task analyses, and
allow for the interpretation of age diVerences in performance within the
context of individual experiments. To demonstrate this, I turn to recent
modelling eVorts in which we examine the issue of age diVerences in
Stroop performance (Spieler & Balota, 2000).

AGE DIFFERENCES IN INHIBITION

One of the landmark papers in cognitive ageing was a paper published by
Hasher and Zacks (1988) that drew on a range of empirical results to
suggest that older adults suVer from a decreased ability to suppress
competing information. The inhibitory de� cit framework was immediately
applicable to a large range of tasks. Many of the tasks that appear to
implicate inhibitory processing involve presenting individuals with
distracting or competing information. In studies where RT is the primary
dependent measure, the prediction is generally that older adults will show
larger interference eVects than do younger adults. Qualitatively, this is the
identical prediction of generalised slowing. Indeed, across many experi-
mental paradigms, evidence for an inhibitory de� cit is also qualitatively
consistent with generalised slowing (e.g., Connelly, Hasher, & Zacks,
1991; Gerard, Zacks, Hasher, & Radvansky, 1991; Spieler, Balota, &
Faust, 1996).

As a speci� c example of this, take the Stroop task (Stroop, 1935). In
this task, participants are required to name the colour in which a word is
printed. In the con� ict condition, the word names a nonmatching colour
(e.g., BLUE printed in green), and the con� ict between the colour and
the word results in a slowing of colour naming compared to a neutral
condition in which the word is colour unrelated (e.g., DOG printed in
green). EYcient performance in this task requires suppressing the proces-
sing of the word information in order to name the colour. A de� cit in the
eYciency of inhibition should result in an increase in the processing of
the word information and an increase in the size of the interference eVect.
Consistent with the inhibitory de� cit account, older adults evidence larger
Stroop interference eVects than do younger adults (Comalli, Wapner, &
Werner, 1962; Panek, Rush, & Slade, 1984; Spieler et al., 1996). Because
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this is also consistent with generalised slowing, it is common to try to
show that the interference eVects are larger or slower than some construal
of generalised slowing. Unfortunately, this strategy is rarely successful
because most general slowing models are not predictive but rather
attempt to account for data after the fact. This gives the model a high
amount of � exibility making it diYcult to obtain empirical results that
clearly refute general slowing (Perfect, 1994).

It is possible to translate a claim about inhibitory processing de� cits
into predictions about how random walk model parameters may diVer
across groups. The reasoning is as follows. Any Stroop trial can be seen
as a selection between a word and colour response. The two boundaries
in the random walk corresponds to the colour and word in the display.
Sampling information from the word dimension moves one closer to the
word boundary and sampling information from the colour dimension
moves one closer to the colour boundary. Because the neutral condition
contains word information not directly related to an appropriate
response, there is less sampling of word information in the neutral condi-
tion and more in the incongruent condition. Thus, interference in the
Stroop task is modelled as a reduction in drift rate in the incongruent
relative to the neutral condition.

An application of a random walk model to Stroop performance in
younger adults showed that the random walk model was able to account
for these results (Spieler, Balota, & Faust, 2000). Recently we (Spieler &
Balota, 2000) revisited the results of an experiment looking at Stroop
performance in young and older adults (Spieler et al., 1996). In the
original study, Spieler et al. (1996) also examined RT distributions from
younger and older adults. The basic pattern is shown in Table 1. The
older adults showed a much larger interference eVect than did the
younger adults. The increase in the interference for the older adults
relative to the younger adults was evidenced as a large increase in inter-
ference in the parameter of the ex-Gaussian. It is this data that we
sought to � t using the random walk model. There are three things to
note about these data that suggest some general diVerences in random
walk parameters for the two groups. First, there is a large diVerence
between young and old in the leading edge of the distribution. Second,
older adults show more variability and greater skew in the distributions
than younger adults. Third, error rates (not shown) were nearly asymp-
totic ( 3% ). The greater variability and skew suggest that older adults
have a lower overall drift rate than do the younger adults. However, the
age diVerence in the leading edge of the distribution is greater than is
obtained solely by drift rate diVerences suggesting that there are age
diVerences in both drift rate and Tr. Assuming equal response criteria,
the random walk � ts to the young and old data are shown in Table 1.
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For these results, the older adults had lower drift rates but surprisingly
the best � t resulted by assuming that both groups were equally in� uenced
by interference, with a change in drift rate of 0.025. This modelling result
is inconsistent with our original account that argued support for an age
de� cit in inhibitory control. Indeed, these results argue against age diVer-
ences in the processes that underlie Stroop performance.

One interpretation of these results is that age diVerences in the Stroop
task are simply a result of overall diVerences between young and old and
have nothing to do with the speci� c processes tapped by this task. In
other words, our interpretation sounds quite similar to a general slowing
account. Here it might be necessary to distinguish between general
slowing models and general slowing perspectives. General slowing models
are concerned with empirical relations between young and old adult
performance (in practice this typically just means RT) across a range of
tasks and conditions. I and others (e.g., Fisher & Glaser, 1996; RatcliV,
Spieler, & McKoon, 2000) have shown that such empirical relations
underdetermine the nature of age diVerences. However, these models will

TABLE 1
Ex-Gaussian parameter estimates reported in Spieler et al. (1 996 )

and corresponding random walk fits

Neutral Incongruent EVect

Young adult data
608 659 51
64 87 23
64 100 36

Young adult model � t
609 658 49
68 81 13
64 101 37

Old adult data
811 878 67
93 97 4
98 195 97

Old adult model
810 875 65
81 102 21
100 196 96

Young parameters: Tr (400, 50); drift rate = .103–.078, response cri-
terion = 57; old parameters: Tr (630, 50); drift rate = .079–.054,
response criterion = 57.
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be nearly impossible to disprove or even address in the context of a single
experiment. In this case, these speci� c results have little to say about the
status of general slowing models.

General slowing perspectives are more diYcult to de� ne. One perspec-
tive emphasises that age diVerences across a range of processing domains
will be accounted for by a small number of explanatory constructs. The
results of any individual study are unlikely to dissuade anyone
committed to such a perspective although there are preliminary data
suggesting age diVerences in drift rate (Spieler & Balota, 2000) but not
response criterion, and age diVerences in response criterion (RatcliV,
Thapur, & McKoon, in press) but not drift rate. An alternative point of
emphasis from a general slowing perspective is that the in� uence of
experimental manipulations in diVerent groups is related to group diVer-
ences in overall RT. The present results may be quite consistent with this
perspective although it is not clear that such a scaling of response times
is a general phenomenon.

Rather than attempt to argue whether these results, or any other
results, violate a general slowing perspective, it may be more useful to
focus on what the present modelling perspective oVers, particularly for
researchers interested in cognitive theories of ageing. These models are
not theories but are implementations of theoretical accounts of how
processing is performed within a task. As such, the emphasis in this form
of modelling remains on traditional task analyses. The models provide a
way of translating our interpretation of how processing is performed in a
task into an account of performance. In this case, performance includes a
range of dependent measures including mean RT, RT distributions, error
rates, and error RTs.

The class of models discussed here, speci� cally sequential sampling
models, are unlikely to cover the entire range of tasks that have been
identi� ed as tapping executive control processes. In particular, tasks that
involve complex problem solving and reasoning are likely to require alter-
native models such as that discussed by Meyer, Glass, Mueller, Seymour,
and Kieras (this issue). Regardless of the particular model used however,
the goal remains the same. Through the application of these models
where appropriate, and in the development and use of alternative models
where necessary, the goal is a formal and quantitative statement about
how processing takes place and how this processing is in� uenced by
ageing. The result is a theoretical account of some aspect of cognition
and of how cognition is in� uenced by the ageing process.

Manuscript received September 2000
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